
Ant Colony Optimization and

Stochastic Gradient Descent

Nicolas Meuleau and Marco Dorigo
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Abstract

In this paper, we study the relationship between the two techniques
known as ant colony optimization (aco) and stochastic gradient descent.
More precisely, we show that some empirical aco algorithms approximate
stochastic gradient descent in the space of pheromones, and we propose
an implementation of stochastic gradient descent that belongs to the fam-
ily of aco algorithms. We then use this insight to explore the mutual
contributions of the two techniques.
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1 Introduction

The study of self-organization in social insects as a source of inspiration for
novel distributed forms of computation is a promising area of AI known as ant
algorithms (or sometimes as swarm intelligence) that is knowing growing pop-
ularity [4, 5, 9, 11]. A particularly successful form of ant algorithms are those
inspired by the ant colonies foraging behavior. In these algorithms, applied to
combinatorial optimization problems, a number of artificial ants are given a
set of simple rules that take inspiration from the behavior of real ants. Artifi-
cial ants are then left free to move on an appropriate graph representation of
the considered problem: they probabilistically build a solution to the problem
and then deposit on the graph some artificial pheromones that will bias the
probabilistic solution construction activity of the future ants. The amount of
pheromone deposited and the way it is used to build solutions are such that the
overall search process is biased towards the generation of approximate solutions
of improving quality.

The historically first example of an algorithm inspired by the ants foraging
behavior was ant system (as) [8, 13] and its first application was to the Travel-
ing Salesman Problem (tsp), a well known NP-hard problem [19]. As a follow
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up of as, a number of similar algorithms, each one trying either to improve
performance, or to make as better fit a particular class of problems, were devel-
oped. Currently, many successful applications of such algorithms exist for NP-
hard academic combinatorial optimization problems such as quadratic assign-
ment [16, 21], sequential ordering [14], resource-constrained project scheduling
[22], vehicle routing with time windows [15], routing in packet-switched networks
[7], shortest supersequence [23], and frequency assignment [20]. Applications to
real-world combinatorial optimization problems are starting to appear: for ex-
ample, a gasoline distribution company in Switzerland is using aco algorithms
to choose routes of its trucks [15], while Fujitsu-Siemens-Computers in Germany
is testing ACO for an important logistic problem [26]. As a consequence, the
ant colony optimization (aco) metaheuristic was recently defined [10, 12] to put
in a common framework all the algorithms that can be considered as offspring
of as.1

Despite these successes, the basic mechanisms at work in aco are still loosely
understood, and there is usually no analytical tool to explain the observed ef-
fectiveness of an aco algorithm. In this paper, we make a step in the direction
of providing such tools by relating formally the aco metaheuristic and the tech-
nique known as stochastic gradient descent (sgd), which has been extensively
used in machine learning [24]. More precisely, we show that some empirical aco

algorithms approximate gradient descent of the expected value of the solution
produced by an ant, in the space of pheromone trails. Moreover, we present an
algorithm for combinatorial optimization that is, at the same time, a stochastic
gradient descent algorithm working in the space of pheromones, and an instance
of the aco metaheuristic. This algorithm is an instance of the gradient-based re-
inforcement learning algorithm known as reinforce [32]. It can be seen both
as a distributed, stigmergic2 implementation of sgd, or as an aco algorithm
where the overall effect of ants activity is to descend the gradient of a given
function in the space of pheromones.

The interest of establishing connections between aco and sgd is that it of-
fers many opportunities of cross-fertilization. On one side, many questions asked
in the study of aco algorithms receive a new light under the gradient-descent
interpretation. For instance, a new way of understanding and proving con-
vergence of aco algorithms is proposed. Moreover, some classical acceleration
techniques for gradient-based reinforcement learning can be easily transposed
to aco algorithms. On the other side, aco algorithms show how to effectively
implement the technique of sgd for solving large combinatorial optimization
problems. Several improvement to the basic trial-and-error search of artificial
ants developed in the best aco algorithms suggest, in turn, new ways of using
gradient descent in the framework of combinatorial optimization.

In this introductory paper, we present our main arguments using the example

1A notable exception is the ABC algorithm for routing that, although belonging to aco,
was developed independently of as [28].

2Stigmergy is a particular form of indirect communication used by social insects to coor-
dinate their activities. Its role in the definition of ant algorithms is discussed at length in
[4, 5, 9, 12].
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of the asymmetric tsp. First (Section 2.1), we briefly review the ant system
algorithm using the atsp as example problem, and we show that as is indeed
closely related to the technique of sgd (Section 2.2 and 2.3). We then describe
an implementation of sgd—or, more precisely, of William’s reinforce [32]—
that belongs to the family of aco algorithms (Section 2.4). In Section 2.5,
we show how to generalize this reasoning to any combinatorial optimization
problem that can be solved by an aco algorithm. Finally, we comment these
results and outline some future research directions in Section 3.

2 Ant System and Stochastic Gradient Descent

Ant system is a simple distributed algorithm that can be applied to any (con-
strained) minimum cost path problem on a graph. Throughout this paper, we
use the application of as to the asymmetric tsp (atsp) as a basic example to
present our arguments.

2.1 Ant System

The atsp can be defined as follows. Let X be a set of cities, |X | = n, and
D = [d(x, y)] be a distance matrix, with d(x, y) ∈ R

+ for all (x, y) ∈ X2. We
will denote by X̄t ⊆ Xt the set of acyclic paths of length t ∈ {1, . . . , n} in terms
of the number of cities crossed (X̄1 = X and X̄2 = {(x, y) ∈ X2 : x 6= y}). atsp

can be defined as the problem of finding a path hn = (x1, x2, . . . , xn) ∈ X̄n that
minimizes the length of the corresponding tour, defined as

L(hn) =

n−1
∑

t=1

d(xt, xt+1) + d(xn, x1) .

The main variables of the as algorithm are the pheromone trails τ(x, y) as-
sociated with each pair of cities (x, y) ∈ X̄2. Let T be the bidimensional vector
gathering all the τ(x, y)’s. The basic principle of as is to simulate artificial
ants that use the pheromone trails to build a random tour. Once its tour com-
pleted, each ant makes a backward trip following the same path and updates the
pheromones on its way back. Finally, the pheromone trails partially evaporate,
that is, they decrease by a constant factor ρ > 0 called the evaporation rate.
The behavior of each ant can be summarized as follows:

Forward:

• Draw the start city x1 at random uniformly;

• At each step t ∈ {1, . . . , n−1}, after following the path ht = (x1, x2, . . . , xt) ∈
X̄t, draw the next city at random following

Pr(xt+1 = x | T , ht) =











0 if x ∈ ht ,

τ(xt, x)/
∑

y ∈ X
y /∈ ht

τ(xt, y) otherwise ,

(1)
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where x ∈ ht means that the acyclic path ht traverses x.

Backward:

• After generating the path hn = (x1, x2, . . . , xn) ∈ X̄n, reinforce the
pheromone trails τ(xt, xt+1) for each t ∈ {1, . . . , n−1} and τ(xn, x1)
by the amount 1/L(hn).

There are many ways of implementing the algorithm. In the original im-
plementation of as, a set of m artificial ants synchronously built m solutions
as follows: first, all the ants perform their forward trip without updating the
pheromones, and then all of them execute their backward trip and update the
pheromones for the next “generation” of m ants. A pheromone evaporation
stage takes place at each generation, before sending the ants backward. The
total update at each generation of each pheromone τ(x, y), (x, y) ∈ X̄2 is then

∆τ(x, y) =

(

m
∑

i=1

δx,y(h
i
n)

L(hi
n)

)

− ρτ(x, y) ,

where hi
n ∈ X̄n is the path followed by the ith ant during its forward trip

(i ∈ {1, 2, . . .m}), and δx,y(hn) = 1 if y is the immediate successor of x in the
tour associated to hn ∈ X̄n and 0 otherwise. When m = 1, the different ants
are sent one after the other in a fully sequential way, waiting for the previous
ant to complete its backward trip before sending a new one. In this case, the
pheromone update implemented by each ant is, for all (x, y) ∈ X̄2:

∆τ(x, y) =
δx,y(hn)

L(hn)
− ρτ(x, y) ,

where hn = {x1, x2, . . . xn} ∈ X̄n is the path followed by the ant during its
forward trip. This pheromone update rule may also be used in a fully asyn-
chronous and parallel implementation of ant system where ants act completely
independently one on the other, and a pheromone evaporation stage is associ-
ated with each ant. It is often replaced by the following rule, that has proved
more effective in practical applications [REF]:

∆τ(x, y) = ρ
δx,y(hn)

L(hn)
− ρτ(x, y) = ρ

(

δx,y(hn)

L(hn)
− τ(x, y)

)

. (2)

Note that the reinforcement of pheromone trails is now multiplied by the evap-
oration rate ρ.

Ant system was extensively tested together with a few other algorithms
inspired by real ants behaviour on the tsp [13]. Although as did not com-
pete with the best known algorithms for tsp, its relative success inspired a
great number of algorithms for different combinatorial optimization problems
(cf. introduction). Often the as-based algorithms provide state-of-the-art per-
formance. These algorithms have recently been put in a unifying framework
called aco metaheuristic [10, 12]. aco is composed of three main procedures.
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In the first one, artificial ants probabilistically construct feasible solutions to
the considered problem by moving on a proper graph representation. In this
phase the construction process is biased by previous experience memorized in
the form of pheromone trails, and, in some implementations, by heuristic infor-
mation available about the considered problem (see discussion in section 3.1.1).
The second phase, briefly discussed in section 3.1.2, is optional: here the solu-
tions generated by the artificial ants can be taken to their local optima by a
suitable local search routine. In the last phase, pheromone trails are updated
by the ants, pheromone evaporation, and/or other suitable processes.

2.2 Stochastic Gradient Descent

aco algorithms are usually regarded as optimization techniques working in the
solution set of the combinatorial problem at hand. For instance, ant system for
atsp is usually seen as an algorithm that tries to find a tour of minimal length
(that is, an optimal solution of the combinatorial problem). However, we adopt
in this work a different approach and we look at aco algorithms as working in
the space of pheromone trails. In other words, we aim at finding an optimal
set of pheromones, which can be defined in different ways. In this paper, we
focus on a particular form of optimality for pheromone values. We will call an
optimal set of pheromones a configuration that optimizes the expected value of
the solution produced by an ant during its forward trip. We then study how
this problem may be solved using gradient descent in the continuous space of
pheromone trails.

In the case of atsp, we aim at maximizing the expected value of the inverse
length of an ant’s forward trip, given the current pheromone trails and the city-
selection rule of equation (1). That is, we will climb stochastically the gradient
of the “error” E defined as:3

E
def
= E

[

1

L(hn)
| T

]

=
∑

hn∈X̄n

Pr(hn | T )
1

L(hn)
.

Note that the expectation is conditional on T because the probability of a given
tour happening depends on the current pheromone trail vector T , while the
“local error” 1/L(hn) does not depend on the weights τ(x, y). Then we have

∂E

∂τ(x, y)
=

∑

hn∈X̄n

∂ Pr(hn | T )

∂τ(x, y)

1

L(hn)
,

for each pair of cities (x, y) ∈ X̄2.

3Although we are dealing with maximization problems using stochastic gradient ascent,
we use in this paper the vocabulary associated with gradient descent algorithms, which is
much more common in the machine learning literature (see the example of artificial neural
networks in section 3.2.1). The variable E represents the objective function of the gradient
ascent algorithm (and not of the original combinatorial optimization problem), and it must
be maximized. However, it plays the same role as the error function used in gradient descent
algorithms.
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The probability of a given path is equal to the product of the probabilities of
all the elementary events that compose it: if hn = (x1, x2, . . . , xn) ∈ X̄n, then

Pr(hn | T ) =

n
∏

t=1

Pr(xt | T , ht−1) ,

where ht is equal to hn truncated after step t: ht = (x1, x2, . . . , xt) ∈ X̄t, and
h0 is the empty sequence. Therefore,

∂ Pr(hn | T )

∂τ(x, y)
= Pr(hn | T )

n
∑

t=1

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
.

Here we have supposed that Pr(xt | T , ht−1) > 0, which is always true because
xt /∈ ht−1, as ht is an acyclic path; and because the pheromone trails never
fall to 0 in the original as algorithm (however, we will see later that this is a
problem for the new algorithm). Define the eligibility trace 4 of (x, y) in path
hn as

Tx,y(hn)
def
=

∂ ln (Pr(hn | T ))

∂τ(x, y)
=

n
∑

t=1

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
, (3)

then
∂E

∂τ(x, y)
=

∑

hn∈X̄n

Pr(hn | T )
Tx,y(hn)

L(hn)
= E

[

Tx,y(hn)

L(hn)
| T

]

. (4)

We will see later how to calculate the traces Tx,y. We can already outline the
basis of the sgd algorithm. Climbing the gradient of E corresponds to updating
T iteratively in the direction of the gradient of E :

∆T = α∇T E ,

that is,

∆τ(x, y) = α
∂E

∂τ(x, y)
,

for each individual “weight” τ(x, y), where α > 0 is the step-size parameter or
learning rate. Following equation (4), we could do exact gradient ascent in the
space of pheromone trails by enumerating all possible paths hn and calculat-
ing, for each of them, the probability Pr(hn | T ) that an ant follows this path
during its forward trip (given the current pheromone trails), the length of the
corresponding tour L(hn), and the variable Tx,y(hn) for each (x, y) ∈ X̄2. Obvi-
ously, this approach would make no sense in practice: once we have enumerated
all possible paths we can solve our original problem simply by taking the best.

4We borrow this vocabulary from reinforcement learning literature. It is used in similar
gradient-based algorithm for optimal control Markov decision processes [1, 2, 32]. The eligi-

bility of a weight is a measure of how much this weight will be involved in the next update.
The Tx,y variables are called traces because they keep track of the eligibility of the weights
at each step t.
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Moreover, the size of X̄n grows exponentially with the number of cities, so that
this approach quickly becomes infeasible. Finally, exact gradient descent per-
forms poorly in many complex domains because it gets trapped in the first local
optimum on its way.

In stochastic gradient descent (sgd), an unbiased random estimate of the
gradient is used instead of the true gradient. In the case of our application to
atsp, equation (4) shows that the gradient of E is the expected value of random
the random variable Tx,y/L given the current pheromones (and the selection rule
of equation (1)). Therefore, if we draw independently m paths h1

n, h2
n, . . . hm

n

in X̄n following the probability Pr(hn | T ), and average their contributions
R(hi

n)Tx,y(h
i
n) to the gradient, then the result

1

m

m
∑

i=1

Tx,y(h
i
n)

L(hi
n)

is a random vector whose expected value is equal to the gradient. In other
words, it is an unbiased estimate of the gradient. This is true regardless the
number of paths sampled, even if only one sample is used to estimate the gra-
dient (that is, m = 1). The resulting stochastic algorithm has a reasonable
complexity.5 Morevoer it may escape from some low-value local optima on its
path. It sometimes makes bad moves because the gradient estimate is wrong,
but these moves may allow jumping out of a bad local optimum. Therefore sgd

performs usually better than exact gradient descent in large, highly multimodal,
search spaces.

The basis of our comparison between aco and sgd is the analogy between
the actions of sending an ant forward and sampling a tour hn from Pr(hn | T ).
During its forward trip, the action of an ant is precisely to sample a solution
following this probability distribution. Therefore, the forward component of as

can be used in a sgd algorithm as well, and we just have to change the weight
update rules. We show below that the updates associated with a given sampled
tour are very similar in the two algorithms.

2.3 A first ACO/SGD Algorithm

In our aco/sgd algorithm, each artificial ant samples a tour hn ∈ X̄n using the
current pheromones, and then updates every pheromone τ(x, y) following

∆τ(x, y) = α
Tx,y(hn)

L(hn)
(5)

In a synchronous implementation, artificial ants are sent by groups of m ants
that sample m tours without updating the pheromones (that is, following the
same probability distribution Pr(hn | T )). Then, each of them update the

5We may actually influence the complexity by fixing the number m of samples drawn to
calculate the estimate of the gradient. More samples allow a more accurate estimate.
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pheromones as the function of the quality of the solution it generated during its
forward trip. The total pheromone update rule is then

∆τ(x, y) = α
m
∑

i=1

Tx,y(h
i
n)

L(hi
n)

,

for all (x, y), where hi
n ∈ X̄n is the path followed by the ith ant . This corre-

sponds to using m independent samples hn to calculate the gradient estimate
(note that the factor 1/m has been absorbed in the learning rate α). The partic-
ular case m = 1, that is based on equation (5), corresponds to a fully sequential
implementation where only one sample is used to estimate the gradient and
make a step in the space of pheromones. Equation (5) may also be used as
the basis of a fully asynchronous and parallel implementation of the algorithm
where the artificial ants act completely independently one on the other. In this
case, the gradient estimates may be slightly biased by the simultaneous read and
write activity of the different ants. However, this bias will probably be negligi-
ble in many applications, provided that the learning rate α stays in reasonable
bounds.6

Given a path hn = (x1, x2, · · ·xn) ∈ X̄n and a pair of cities (x, y) ∈ X̄2, the
problem is now to calculate Tx,y(hn) as defined by equation (3). Using equation
(1), we see that:

• if x 6= xt−1 or y ∈ ht−1, then Pr(xt | T , ht−1) is independent of τ(x, y)
and

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
= 0 ;

• if x = xt−1 and y = xt then

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
=

∂ ln
(

τ(x, y)/
∑

y′ /∈ht−1
τ(x, y′)

)

∂τ(x, y)
,

=
∂ ln (τ(x, y))

∂τ(x, y)
−

∂ ln
(

∑

y′ /∈ht−1
τ(x, y′)

)

∂τ(x, y)
,

=
1

τ(x, y)
−

1
∑

y′ /∈ht−1
τ(x, y′)

,

=
1− Pr(y | T , ht−1)

τ(x, y)
;

• if x = xt−1, y 6= xt and y /∈ ht−1 then, similarly,

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
= −

Pr(y | T , ht−1)

τ(x, y)
;

6Typically, the learning speed of a constant step-size sgd algorithm increases with the
learning rate, up to a certain limit where the quality of the solution obtained is debased and
the algorithm becomes unstable. By a “reasonable” learning rate value, we mean any value
that is small enough to preserve the quality of the solution found and avoid instability.
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Therefore, the sgd algorithm can be implemented using distributed, local in-
formation, as done in as. The weight update corresponding to a sampled tour
can be performed by the ant that sampled this tour during a backward trip.
When returning to the tth city of the tour7, the ant updates the pheromone
trail τ(xt, x) for all x ∈ X following

∆τ(xt, x) = α
1

L(hn)

1

τ(xt, x)
(δ(xt+1 = x)− Pr(x | T , ht)) , (6)

where δ(xt+1 = x) = 1 if xt+1 = x and 0 otherwise, and Pr(x | T , ht) represents
the probability that the ant chooses x ∈ X as the next city when it stands in
xt and it has already followed the path ht ∈ X̄t. Note that the ants must be a
little bit more “intelligent” than in the original as. They need remember not
only the tour they followed, but also the probability of choosing each city at
each step of the forward trip. If they do not have such a memory, they can
always recompute the probabilities using the pheromone trails, but the trails
must not have changed in between due to another ant updating pheromones.
Therefore, this solution works exactly only in a synchronous implementation of
the algorithm.

The previous results show that sgd of the error E [1/L(hn) | T ] is close to the
original as algorithm. This appears clearly when we compare equation (6) to
the analogous step-by-step update rule used in an asynchronous implementation
of as based on equation (2):

∆τ(xt, x) = ρ

(

δ(xt+1 = x)

L(hn)
− τ(xt, x)

)

. (7)

The step-size α of sgd plays the role of the evaporation rate ρ in as. The main
differences are:8

• the pheromone value τ(xt, x) in as update rule is replaced in sgd by the
probability probability Pr(x | T , ht) of moving from xt to x;

• the decrease of pheromones (through the term−τ(xt, x) in (7), and through
the term −Pr(x | T , ht) in (6)) is proportional to the reward 1/L(hn) in
our algorithm, while it is independent in the original as;

• the presence of the factor 1/τ(xt, x) in the update rule (6) of the gradient-
based algorithm.

It is important to note that, in our algorithm, the pheromones that are not used
during an ant’s forward trip are not modified during the ant’s backward trip. If
we had already visited y when we were in x, then τ(x, y) was not used to chose
the next city after x, and hence, it was not used at all during the whole forward

7We assume here that the pheromone variables are stored as a set of tables Tx =
[τ(x, y)]y∈X , each Tx being accessible to the artificial ants (or “physically located”) in city
x ∈ X.

8Another difference between the two algorithms is that the pheromone τ(xn, x1) between
the last and first city of the tour is reinforced by as, while it is left untouched by sgd.
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trip. As a consequence, τ(x, y) is left unchanged during the backward trip (that
was not the case in the original as where every pheromone trail evaporates).
This makes sense, because if τ(x, y) is not used during the generation of a tour,
then the value of this tour provides no information about the good way to move
τ(x, y). This will be true in any application of sgd. It implies that the weight
update associated with a forward trip (i.e., a sampled solution), can always be
performed in a backward trip following the same path. This is the basis of “ant”
implementations of sgd presented in this paper.

There are a few problems with the algorithm we just defined. First, the evap-
oration rule may bring the weights τ(x, y) at or below 0. Negative pheromone
trails do not really make sense. Moreover, we supposed the pheromones (strictly)
positive when calculating the gradient. When some pheromones are 0, the ana-
lytical expression of the gradient is more complex. An empirical solution to this
problem consists of preventing artificially the weights from falling below a given
value ε > 0. However, there is another problem with this algorithm: the contri-
bution Tx,y(hn)/L(hn) of a sequences hn ∈ X̄n may tend to infinity when some
pheromone trails τ(x, y) tend to 0, which induces a very unstable behavior of
the algorithm in some regions of the search space. For instance, if τ(x, y) ≈ 0 for
some (x, y) ∈ X̄2 and an ant unluckily goes through this edge during its forward
trip, then the subsequent weight update, that is proportional to 1/τ(x, y), may
be devastating and bring the algorithm very far from its original state. This
is a case of unstable behavior due to unboundedness of the gradient estimate
variance [3]: although the expected value of the gradient estimate (that is, the
gradient itself) is always finite, the variance of the gradient estimate tends to
infinity when some weights τ(x, y) tend to 0. In the next section, we present a
new implementation of sgd that does not exhibit this instability, and that still
belongs to the family of aco algorithms.

2.4 A Stable ACO/SGD Algorithm

A classical solution to the problem of unbounded variance and unstable behavior
is to use the Boltzmann law instead of the proportional selection rule of equation
(1) (e.g., [1]). In our case, the city-selection rule takes the form:

Pr(xt+1 = x | T , ht) =











0 if x ∈ ht ,

eτ(xt,x)/
∑

y ∈ X
y /∈ ht

eτ(xt,y) otherwise .
(8)

The derivation presented in section 2.2 is still valid, the only changes are in the
calculation of the traces (section 2.3):

• if x 6= xt−1 or y ∈ ht−1, then

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
= 0 ;
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• if x = xt−1 and y = xt then

∂ ln (Pr(xt | T , ht−1)))

∂τ(x, y)
=

∂ ln
(

eτ(x,y)/
∑

y′ /∈ht−1
eτ(x,y′)

)

∂τ(x, y)
,

=
∂ ln

(

eτ(x,y)
)

∂τ(x, y)
−

∂ ln
(

∑

y′ /∈ht−1
eτ(x,y′)

)

∂τ(x, y)
,

= 1−
eτ(x,y)

∑

y′ /∈ht−1
eτ(x,y′)

,

= 1− Pr(y | T , ht−1) ;

• if x = xt−1, y 6= xt and y /∈ ht−1 then, similarly,

∂ ln (Pr(xt | T , ht−1))

∂τ(x, y)
= −Pr(y | T , ht−1) .

As in the previous case, the gradient-descent weight updates may be performed
by the artificial ants during backward trips where they retrace their path back-
ward. The new pheromone update rule is

∆τ(xt, x) = α
1

L(hn)
(δ(xt+1 = x)− Pr(x | T , ht)) . (9)

It replaces equation (6). Note that the factor 1/τ(xt, x) has disappeared from
the right hand side, making this rule very similar to the original as update rule
(equation (7)).

Ants need the same memory capacity as in the previous sgd algorithm. This
new algorithm does not have the drawbacks of the previous. The weights τ(x, y)
are unconstrained and can take any real value while keeping the probability
of each path (strictly) positive. Moreover, the gradient estimate is uniformly
bounded (that is, bounded by the same bound for all hn ∈ X̄n) by the value
1/L∗ where L∗ is the length of the shortest path, and so, its variance is bounded
by 1/L∗2. Therefore, this algorithm is stable in any part of the search space.

Bounded variance is a necessary condition for convergence to a local opti-
mum, but it is not sufficient [3]. As a matter of fact, it can be shown that
stochastic gradient algorithms as ours may exhibit unbounded behavior, that
is, some weights may tend to infinity [27]. A typical case of unbounded behav-
ior is when the weights that generate an optimal solution tend to plus infinity,
while all the other weights tend to minus infinity. The problem is that an opti-
mal set of pheromone values (that is, a set that generates an optimal tour with
probability 1) is obtained when the weights are positive or negative infinite.
Therefore, the algorithm may continue to climb a pick infinitely, so that some
weights diverge to infinity. However, this limitation has no consequence in our
combinatorial optimization framework because we are not interested in having
all ants follow an optimal path, but we just want that an optimal solution is
generated (at least) once. Moreover, some classical tricks may be used to derive
a formally convergent variant of our algorithm. Notably, we can:
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• either artificially bound the weights away from infinity (that is, they are
enforced to stay in a compact subset of R

l, where l is the total number of
weights), as in [27];

• or add to the objective function a penalty term in the form −c·||T ||, where
c is a constant and ||T || is a norm of T , so that the objective function
tends to −∞ when the weights tend to infinity [3].

We conjecture that any of these two solutions may be used to design a variant
of our algorithm that converges with probability one to a local optimum of the
error function.

2.5 Extensions

It is easy to modify the algorithm so that it optimizes other criteria than
E [1/L(hn) | T ]. For instance, if we want to minimize the expected tour length
E [L(hn) | T ], then the update rule of the (stable) sgd algorithm becomes

∆τ(xt, x) = −αL(hn) (δ(xt+1 = x)− Pr(x | T , ht)) .

Here, the algorithm may be understood as maximizing the reward −L(hn),
which is always negative.9 The shape of the objective function strongly deter-
mines the behavior of a gradient-following algorithm with constant step-size as
ours. The performance of sgd may vary with different objective functions, even
if these functions have the same local and global optima.

More generally, the same approach could be applied to every combinato-
rial optimization problem for which an aco algorithm can be designed.10 The
generic aco/sgd approach to a given maximization problem with solution set
S and objective function f : S → R can be resumed as follows: First, design a
stochastic controller that generates solutions in an iterative way using a set of
weights T . The controller is represented as a construction graph G such that
the generation of a solution corresponds to some sort of path in this graph,
and the weights T are attached to the arcs (or vertices) of G. The weights,
called pheromones, determine the transition probabilities in G during the ran-
dom generation of a solution. This first stage, which is called the choice of a
problem representation in [12], is crucial. It transforms the static combinatorial
problem max{f(s) : s ∈ S} into the problem of optimizing a trajectory, that is,
a dynamic problem.

The next step is to define the “error” function as the expected value of a
solution produced by the controller, given the current weights:

E = E [F (s) | T ] =
∑

s∈S

Pr(s | T )F (s)

9Conversely to the original as, our gradient algorithm does not assume that the objective
function is positive.

10That is, for which a constructive heuristic can be defined [10, 12]
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where F : S → R strictly increases with f (that is, f(s) > f(s′) =⇒ F (s) >
F (s′)).

Solutions s are generated by an iterative stochastic process that follows a
finite number of steps. Let H be the set of trajectories in G that the controller
may follow when generating a solution, and g : H → S be the function that
assigns the solution produced to a given trajectory. The error may be rewritten
as:

E = E [F (g(h)) | T ] =
∑

h∈H

Pr(h | T )F (g(h)) .

The gradient of the error is then the expectation over all possible trajectories
of the value of the solution produced multiplied by an eligibility trace Tτ :

∂E

∂τ
=
∑

h∈H

Pr(h | T )F (g(h))Tτ (h) = E [F (g(h))Tτ (h) | T ] ,

for each individual weight τ . The trace Tτ (s) is the sum of the partial derivatives
of the log of every elementary event that composes the trajectory s. Note that
this decomposable structure of the gradient derives from the fact that solution
generation is an iterative process, that is, from the very nature of the aco

approach.
Stochastic gradient descent can thus be implemented by sampling a few tra-

jectories h—which can be seen as sending a few ants forward in the construc-
tion graph G—and calculating their contribution to the gradient. In general,
the weights that are not used when sampling a trajectory h have zero update
according to the contribution of h. Therefore, the weight updates can be per-
formed by artificial ants during backward trips in G.11 Finally, if the ants use
the Boltzmann law to make random choices during forward trips, then the gra-
dient estimate is uniformly bounded and the algorithm is stable in any part of
the search space.

3 Discussion

Technically speaking, the aco/sgd algorithm described above is not new. It
is an instance of the generalized learning automaton [25] and, more precisely,
of the gradient-based reinforcement learning algorithm known as reinforce

[1, 32]. The originality of our work is to apply reinforce in the framework of
aco for combinatorial optimization, instead of the traditional Markov decision
process (mdp) or partially-observable mdp (pomdp) used in the reinforcement
learning literature [18, 30]. Therefore, this work establishes connections between

11Note that the construction process does not necessarily have the same “taboo” aspect as
in atsp, where each weight is used at most once during an ant’s forward trip. The calculation
of the sgd update is not more difficult in this case. The general rule is that if an ant traverses
a vertex of G (and uses the pheromone values stored here) several times during its forward
trip, it must traverse this vertex (and update the pheromones stored here) the same number
of times during its backward trip.
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“classical” reinforcement learning and the less classical aco learning. It sug-
gests a general approach for applying reinforcement learning to combinatorial
optimization which can be resumed as follows:

1. Design a parametrized stochastic controller that generates solutions in an
incremental way, which turns the original static (optimization) problem
into a dynamic (control) problem;

2. Use a reinforcement learning algorithm to (learn to) optimize the con-
troller.

It is tempting to over-generalize the previous results and see in any aco

algorithm a more or less accurate approximation of the mechanism of gradient
descent in the space of pheromones. In a sense, sgd is a very intuitive trial-and-
error, Monte-Carlo technique that samples solutions, increases the probability
of the best sampled solutions, and decreases the probability of the worst. Its
particularity is to be grounded on a solid theoretical framework so that it is
possible to give a sense to the update performed by the algorithm, but the basic
intuition is the same as in aco algorithms. Researchers in the field of aco

algorithms might find this position a little bit reductive. In fact, the best aco

algorithms are not limited to the simple trial-and-error ant search, but also use
other optimization techniques such as constructive heuristics and local search
routines [14, 29]. However, these features may also be grounded in the gradient-
descent framework, and improve the algorithm performance (see Section 3.1).
It is also interesting to note that the assimilation of aco to approximate sgd

allows us to draw a parallel with artificial neural networks (anns), because sgd

is the basic principle behind the well-known backpropagation algorithm [6, 24].
Accordingly, we suggest in this work that the basic mechanisms at work in aco

and anns could be the same.
In the following, we discuss some opportunities of cross-fertilization between

aco and sgd, and then survey some important issues in the study of aco

algorithms.

3.1 Mutual Contributions

There are many opportunities of cross-fertilization between aco and sgd (or,
more precisely, gradient-based reinforcement learning). On one side, several
efficient acceleration techniques for gradient-based reinforcement learning can
easily be implemented in our aco/sgd algorithm, and then generalized to other
aco algorithms (future work). On the other side, existing aco algorithms sug-
gest different ways of implementing the technique of sgd in the context of combi-
natorial optimization. The most successful applications of the metaheuristic are
not limited to the simple trial-and-error ant search, but also use some “external”
information in the form of constructive heuristics or (discrete) local search rou-
tines. They suggest different ways of merging sgd and these two combinatorial
optimization techniques. In this section, we examine how our simple aco/sgd

algorithm can be used in combination with these techniques, as inspired by
previous aco algorithms.
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3.1.1 Using Constructive Heuristics

Many successful implementations of the aco metaheuristic combine information
from the pheromone trails and heuristic information when generating solutions.
In the case of as, the city selection rule (1) is replaced by

Pr(xt+1 = x | T , η, ht)

=











0 if x ∈ ht ,

τ(xt, x)aη(xt, x)b/
∑

y ∈ X
y /∈ ht

τ(xt, y)aη(xt, y)b otherwise ,

where η ≥ 0 is a (constructive) heuristic function of (x, y) ∈ X̄2, and a and b
are two (positive) parameters that determine the relative influence of pheromone
trails and heuristic information. The function η reflects heuristic information
about the good way to complete a partial solution. For instance, in the case of
atsp, a common choice is η(x, y) = 1/d(x, y) for all (x, y) ∈ X̄2. In this case,
the closest unvisited cities have larger probability to be chosen than without
heuristic information. Moreover, in the successful applications of aco to non-
stationary (time-varying) problems, such as data packet routing in antnet [7],
the function η is used to provide information to the algorithm about the current
state of the problem.

There are several ways of integrating a similar mechanism in our algorithm.
A particularly simple and elegant formulation is obtained when we replace the
exponential selection rule (8) of our gradient algorithm by the following equa-
tion:

Pr(xt+1 = x | T , η, ht)

=











0 if x ∈ ht ,

eaτ(xt,x)+bη(xt,x)/
∑

y ∈ X
y /∈ ht

eaτ(xt,y)+bη(xt,y) otherwise ,

(10)

where a and b ≥ 0 are two external parameter that plays the same role as in
the previous equation.12 Equation (8) is obtained when a = 1 and b = 0. b = 0
and a > 0 corresponds to the Boltzmann law with a temperature parameter set
to the value 1/a [1]. When a = 0 and b > 0, the algorithm does not use the
pheromone trails at all. It is then a iterative stochastic heuristic search similar
to the first stage of grasp [REF]. Therefore, we dispose of a hole range of
algorithms that extend from pure (heuristic free) gradient-based reinforcement
learning, to simple (constant probability) stochastic heuristic search.

The next step is to recalculate the gradient to take into account the new
selection rule. One more time, only the end of the calculation is modified. We
have:

12Note that this formalism is compatible with negative heuristic functions. Therefore, we
can chose η(x, y) = −d(x, y) in the case of atsp.
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• if x 6= xt−1 or y ∈ ht−1, then

∂ ln (Pr(xt | T , η, ht−1))

∂τ(x, y)
= 0 ;

• if x = xt−1 and y = xt then

∂ ln (Pr(xt | T , η, ht−1)))

∂τ(x, y)

=
∂ ln

(

eaτ(x,y)+bη(x,y)/
∑

y′ /∈ht−1
eaτ(x,y′)+bη(x,y′)

)

∂τ(x, y)
,

=
∂ ln

(

eaτ(x,y)+bη(x,y)
)

∂τ(x, y)
−

∂ ln
(

∑

y′ /∈ht−1
eaτ(x,y′)+bη(x,y′)

)

∂τ(x, y)
,

= a

(

1−
eaτ(x,y)+bη(x,y)

∑

y′ /∈ht−1
eaτ(x,y′)+bη(x,y′)

)

,

= a (1− Pr(y | T , η, ht−1)) ;

• if x = xt−1, y 6= xt and y /∈ ht−1 then, similarly,

∂ ln (Pr(xt | T , η, ht−1))

∂τ(x, y)
= −a Pr(y | T , η, ht−1) .

This leads to the following update rule, after absorbing the constant factor a in
the learning rate α:

∆τ(xt, x) = α
1

L(hn)
(δ(xt+1 = x)− Pr(x | T , η, ht))

The only difference with the update rule of the previous algorithm (equation (9))
is that the heuristic-independent probability Pr(x | T , ht) calculated following
(8) is replaced by the heuristic-dependent probability Pr(x | T , η, ht) defined by
(10). Therefore, the basic principle of the heuristic-free algorithm generalizes to
the new selection rule: each ant has to memorize the probability distribution it
uses at each step of its forward trip, and then decrease the pheromones on its
way back proportionally to these distributions.

We have thus a simple framework that covers a great variety of algorithms.
By varying the values of the external parameters a and b, we change two factors
that strongly influence effectiveness of the algorithm. The first is the shape of
the “error” function E (defined as a function from pheromone vectors to real
number) that the algorithm is approximately “descending”. It is not clear to
us what is exactly the effect of the new update rule on the “landscape” we are
exploring. A globally optimum is still obtained by putting infinite weights on
the best paths (that do not change from one parameter setting to an other),
but some important aspects such as the steepness of some peaks is modified.
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The second and probably most important feature that is modified by varying
parameters a and b is the sampling process used to estimate the gradient. The
probability of sampling different paths and the update of the corresponding
pheromones change from one setting to another. In the case of atsp, the overall
effect of using heuristic information (having b > 0) is that when an unvisited
city y is close to the current city x, it has a bigger chance to be chosen than
without heuristic information. In counterpart, the the pheromone trail τ(x, y)
is decreased by a larger amount each time that y is considered as candidate suc-
cessor to x. Further research is needed to understand how better performances
may be obtained in this framework.

3.1.2 Using Discrete Local Search

The (aco) metaheuristic is often used in conjunction with local search algo-
rithms [14, 29]. In this approach, an aco algorithm generates starting points
for a discrete local search routine13. Each ant produces a solution, say s1, which
is then transformed into another solution, say s2, by the local search. Then the
pheromones are updated. As our goal is to maximize the quality of the final
solution s2, pheromones updates must be proportional to the quality of s2, not
s1. Given this, there are still two ways of updating the pheromones:

• either we reinforce the pheromones corresponding to the final solution s2.
In other words, we do as if the solution s2 was generated directly by the
ant algorithm, without the help of the local search (in this approach, we
suppose that there is a mapping between the solution set and the set of
possible forward trajectories).

• or we reinforce the pheromones corresponding to the intermediate solution
s1.

By analogy with similar procedures in the area of genetic algorithms [31], we call
the first alternative the Lamarckian approach, and the second the Darwinian
approach.

The main argument supporting the Lamarckian approach is that it is rea-
sonable to think that, if the ant algorithm can be trained directly using the
better solution s2, then it would be stupid to train it using the worse solution
s1. In fact, in published aco implementations, only the Lamarckian alternative
has been used. In the case of sgd, however, the Darwinian approach may make
more sense. It is easy to show that, if we try to maximize the expected value of
the solution s2 produced by the local search algorithm, then the update rule of
an sgd algorithm is to reinforce the pheromones corresponding to the interme-
diate solution s1 proportionally to the value of the final solution s2. The formal
framework developed in section 2.5 can be used for this calculation, the effect
of the local search being modeled in the function F . Having understood this,

13Gradient descent is itself a local search procedure, but it operates in the continuous space
of controller weigths, while the discrete local search used here operates in the discrete set of
solutions.
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we can derive qualitative arguments in favor of the Darwinian approach. For
instance, if the good starting points of the local search are very far from the
corresponding local optima in the topology of the gradient algorithm, then the
Darwinian approach could outperform the Lamarckian.

3.2 Important Issues

By establishing connections with anns on a side, and reinforcement learning on
another side, we also show that aco algorithms are concerned with two impor-
tant issues paradigmatically illustrated in these techniques. They are, respec-
tively, the issue of generalization and the exploration vs. exploitation dilemma.
In this section, we examine how these problems arise in aco algorithms. It is
clear that any reinforcement learning algorithm for combinatorial optimization
has to deal with these two issues simultaneously.

3.2.1 Generalization

The most famous application of sgd is surely the algorithm known as back-
propagation in artificial neural networks (anns), and the issue the most studied
in backpropagation is probably the ability of the algorithm to generalize over
inputs [6]. Stated simply, the problem is to find a set of weights W = [w]
for a network encoding a function F from an input set I to an output set O
(say, O = R), so that F approximates as much as possible a target function
F ∗ : I → O. Backpropagation learns an optimal configuration of weights by
observing a set of training examples, that is, pairs (i, F ∗(i)) with i ∈ I , and
memorizing and generalizing these observations. In general, the input set I is
a huge combinatorial set, if not an infinite set. Therefore, it is not possible to
present every instance i ∈ I in the training set. However, backpropagation is
able to generalize the observed data to unseen instances. That is, it assumes
that any unseen input i has a value F ∗(i) that is close to the value of the ob-
served examples which are similar to i in some sense. It is well known that
the ability of an ann to generalize and its efficiency in generalization strongly
depend on the network structure [6].

As we said, the backpropagation algorithm is an instance of sgd. More
precisely, its overall effect is to descend the gradient of the mean square error

EMS =
∑

i∈I

pi (F (i)− F ∗(i))
2

= E
[

(F − F ∗)2 | W
]

,

where (pi)i∈I is a given probability distribution on instances (
∑

i∈I pi = 1).
Note that, conversely to the case of our aco/sgd algorithm, the expectation in
this equation is conditional on the weights W because the local error

eMS
def
= (F − F ∗)2

depends on the weights, while the probabilities pi do not. Therefore,

∂EMS

∂w
=
∑

i∈I

pi
∂eMS(i)

∂w
= E

[

∂eMS

∂w
| W

]

.
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This result suggests an exact gradient algorithm that enumerates all possible
inputs i ∈ I for each step of gradient descent. Conversely, backpropagation uses
an unbiased estimate of the gradient obtained by sampling a unique input i ∈ I .
After sampling input i and comparing the actual output F (i) and the desired
output F ∗(i), backpropagation updates the weights of the network following

∆w = −α
∂eMS(i)

∂w
.

for each weight w. The values of F (i) and F ∗(i) are used here to calculate the
partial derivative ∂eMS(i)/∂w.

We see that the basic principles of backpropagation and our algorithm are the
same. It is, in both case, a Monte-Carlo estimation of the gradient of a given
error function, with respect to a set of weights attached to the components
of a graph (the construction graph G in one case, and the ann itself in the
other case). Also, both are distributed and parallel implementation of this
principle. Therefore, our algorithm should have, at least in part, the same
ability to generalize observed data over unseen instances as backpropagation.

Actually, it is not hard to convince oneself that generalization is as big an
issue in aco in general as in anns. For instance, it is clear that the application
of as to the atsp works by generalizing the observed solutions: if a majority
of the sampled tours that traverse a given arc (x, y) ∈ X̄2 are of good quality,
then the algorithm increases the probability of traversing this arc. In a sense,
it assumes that, in general, the tours that traverse (x, y) are of good quality.
That is, it generalizes the observations.

As for backpropagation, the ability and efficiency of an aco algorithm to
generalize is mostly determined by the structure of the graph, that is, the prob-
lem representation used by the artificial ants. Moreover, we believe that it is
usually easier to predict the kind of generalization that an aco algorithm can
do given its problem representation (as we just did for the atsp), than it is to
predict the effect of a given neural network architecture for a given problem.

3.2.2 Exploration vs. Exploitation

As we stressed above, the aco metaheuristic can be seen as a way of applying
reinforcement learning to combinatorial optimization problems. Thus, every
aco algorithm has to deal with one of the main issues in reinforcement learning:
the exploration vs. exploitation dilemma [17]. This is the problem of finding
an optimal compromise between the necessity to experiment the least known
solutions (exploration), and the necessity to maximize rewards by taking the
estimated best actions (exploitation). This problem is characteristic of real-
time on-line learning, where one motivation is to learn as fast as possible, and
another is to maximize the reward received during each experience.

In the case of aco algorithms, the mechanisms of the exploration vs. exploitation
dilemma are intimately linked with those of generalization. For instance, in the
application to the atsp, since the pheromones are attached to pairs of cities
(x, y) ∈ X̄2, the algorithm is confronted to questions like: “Is it necessary to
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try again a given pair of cities that seems to be non-optimal?”. Clearly, other
questions will arise with another problem representation. It appears that an
optimal solution to the exploration vs. exploitation dilemma in the framework
of aco depends intimately on the problem representation, that is, the structure
of the construction graph.

In practice, our aco/sgd algorithm does not really address the issue of ex-
ploration, although it does face the dilemma. Its behavior is dictated by the
trial-and-error search of sgd, independently of any consideration about explo-
ration.

4 Conclusions

In this paper, we explored the connections between the two techniques of aco

and sgd. First, we showed that the empirical designed as algorithm is very simi-
lar to sgd in the space of pheromones, and we proposed a stable implementation
of gradient-based reinforcement learning that belongs to the framework of aco

algorithms. Then we outlined a general aco/sgd algorithm for combinatorial
optimization. The performance of this algorithm depends crucially on some ba-
sic choices such as the problem representation and the objective function. This
insight may be used to develop simple acceleration techniques for aco algo-
rithms, by transposing previous work on gradient-based reinforcement learning.
Moreover, the most successful applications of the aco metaheuristic suggest
new ways of merging gradient descent with other optimization techniques for
combinatorial optimization.

In conclusion, we believe that this work constitutes a significant step toward
understanding the mechanisms at work in aco algorithms, bringing a new light
to some important issues in the theory of these algorithms.
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